

Special Topic :

NP-hard, Reduction

Jonathan Irvin Gunawan

E

E E

E E E E

E E E E E E E E

 E E E E E E E E E E E E E E E E

prerequisite

know graph

know DP

motivation problem

IOI 2014 Friend

given a graph, each node has a
weight.

you want to choose subset of nodes
with maximum total weight. any pair of
chosen nodes must not be adjacent.

some definitions

P =

can be solved in
polynomial time

NP =

can be checked in

polynomial time

NP-hard =

if you can solve this in poly

time, you can solve all
problems in NP in poly time

no one has found polynomial
solution to any NP-hard problem

research since 1971, unlikely to
be solved in 5 hours

optimisation vs
decision problem

decision problem
given N vertices, can you choose at

most K vertices s.t. for each edge
(a,b), at least one of the vertices is

chosen?

optimisation problem

given N vertices, find minimum number of
vertices to be chosen for each edge (a,b),

at least one of the vertices is chosen?

decision <=> optimisation

why?

methods to know whether a
problem is NP-hard

reduction

notation + definition 1 :

Y polynomial-time reduce to X
(notation Y ≤p X) <=> if you can
solve X in polynomial time, then
you can solve Y in polynomial

time

in other words

Y ≤p X <=> you can “use” X to
solve Y

suppose you want to know
whether problem X is NP-hard

if you can find an NP-hard
problem Y, and Y ≤p X, then X is

NP-hard

by contradiction

let’s begin the first problem

3-SAT

given a conjunction of several
clauses, where each clause is

disjunction of 3 literals.

find whether the conjuction is

satisfiable

example

(a OR -a OR -b) AND

(c OR b OR d) AND

(-a OR -c OR -d)

example
(a OR b OR c) AND

(a OR b OR -c) AND

(a OR -b OR c) AND

(a OR -b OR -c) AND

(-a OR b OR c) AND

(-a OR b OR -c) AND

(-a OR -b OR c) AND

(-a OR -b OR -c)

accept without proof, that

3-SAT ∈ NP-hard

for now, let’s

now, tasks

MAX-CLIQUE

we prove that MAX-CLIQUE
is NP-hard

3-SAT ≤p MAX-CLIQUE

example :

(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

example :

(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

we create a node for each literal

a -b -c

a

b

c

-a

b

c

example :

(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

for each node (x,y) we add an edge iff

(1) they are from a different clause, and

(2) x is not a negation of y

a -b -c

a

b

c

-a

b

c

example :

(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

MAX-CLIQUE ≥ number of clauses

<=>

3-SAT is satisfiable

a -b -c

a

b

c

-a

b

c

example :

(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

chosen node in CLIQUE <=> the true literal

a -b -c

a

b

c

-a

b

c

proven :

if we can solve MAX-CLIQUE in

polynomial time, we can solve 3-SAT
in polynomial time

since 3-SAT NP-hard,

MAX-CLIQUE is also NP-hard

3-SAT ≤p HAMILTONIAN-PATH

another reduction

3-SAT ≤p TRIANGLE PARTITION

another reduction

how do we proceed when
encountering NP-hard

problem?

tips 1: check constraint

SUBSET SUM

given an array N, find a
subset that sums to K

SUBSET SUM is NP-hard

3-SAT ≤p NP-hard

SUBSET SUM

given an array N of positive integers,
find a subset that sums to K

1 ≤ N, K ≤ 1000

tip 2: check for special
property of the problem

given S = first N fibonaci number

{1,1,2,3,…}

determine whether you can
partition S to two equal sum

subset

SUBSET-SUM ≤p PARTITION-SUM

SUBSET-SUM

given array A and find subset with total K

<=>

PARTITION-SUM

find partition in A ∪ {K - (sum(A) - K)}

SUBSET-SUM

A : {1,2,3,4,5} K = 8

K - (1 + 2 + 3 + 4 + 5 - K) = 8 - (15 - 8) = 1

PARTITION-SUM

A : {1,2,3,4,5,1}

PARTITION-SUM itu NP-hard
so?

int main()  
{
 int n;
 cin >> n;
 puts(n % 3 == 1 ? “no” : “yes”);  
}

IOI 2014 - Friend

given a graph, each node has a
weight.

you want to choose subset of nodes
with maximum total weight. any pair of
chosen nodes must not be adjacent.

MAX INDEPENDENT SET

MAX CLIQUE ≤p MAX
INDEPENDENT SET

the edges are added incrementally. for
each i from 2 to N, given j (1 ≤ i < j) the

edges added are either:

1. edges connecting j to i

2. edges connecting all j neighbours to i

3. both 1 and 2

special graph :

1. satisfies triangle inequality

2. planar

3. bipartite

Google Code Jam
2008

Milkshakes

There are N milkshake flavors, each can be either
prepared malted or not

There are M customers, each has a set of milkshakes that
they like. At most one of them is malted. They will be

happy if you have at least one of those type prepared.

Minimize the number of flavor that is malted to satisfy all

customers

1 ≤ N, M ≤ 2000

EOF
Q&A?

