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prerequisite



know graph



know DP



motivation problem
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given a graph, each node has a 
weight.


you want to choose subset of nodes 
with maximum total weight. any pair of 
chosen nodes must not be adjacent.



some definitions



P =

can be solved in 
polynomial time



NP =

can be checked in 

polynomial time



NP-hard =

if you can solve this in poly 

time, you can solve all 
problems in NP in poly time



no one has found polynomial 
solution to any NP-hard problem


research since 1971, unlikely to 
be solved in 5 hours



optimisation vs 
decision problem



decision problem
given N vertices, can you choose at 

most K vertices s.t. for each edge 
(a,b), at least one of the vertices is 

chosen?



optimisation problem

given N vertices, find minimum number of 
vertices to be chosen for each edge (a,b), 

at least one of the vertices is chosen?



decision <=> optimisation

why?



methods to know whether a 
problem is NP-hard



reduction



notation + definition 1 :

Y polynomial-time reduce to X 
(notation Y ≤p X) <=> if you can 
solve X in polynomial time, then 
you can solve Y in polynomial 

time



in other words

Y ≤p X <=> you can “use” X to 
solve Y



suppose you want to know 
whether problem X is NP-hard



if you can find an NP-hard 
problem Y, and Y ≤p X, then X is 

NP-hard


by contradiction



let’s begin the first problem



3-SAT



given a conjunction of several 
clauses, where each clause is 

disjunction of 3 literals.

find whether the conjuction is 

satisfiable



example

(a OR -a OR -b) AND 

(c OR b OR d) AND 


(-a OR -c OR -d)



example
(a OR b OR c) AND 

(a OR b OR -c) AND 

(a OR -b OR c) AND

(a OR -b OR -c) AND

(-a OR b OR c) AND

(-a OR b OR -c) AND

(-a OR -b OR c) AND


(-a OR -b OR -c)



accept without proof, that

3-SAT ∈ NP-hard

for now, let’s



now, tasks



MAX-CLIQUE



we prove that MAX-CLIQUE 
is NP-hard



3-SAT ≤p MAX-CLIQUE



example : 

(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)



example : 

(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

we create a node for each literal

a -b -c

a

b

c

-a

b

c



example : 

(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

for each node (x,y) we add an edge iff 

(1) they are from a different clause, and

(2) x is not a negation of y

a -b -c

a

b

c

-a

b

c



example : 

(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

MAX-CLIQUE ≥ number of clauses

<=>


3-SAT is satisfiable

a -b -c

a

b

c

-a

b

c



example : 

(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

chosen node in CLIQUE <=> the true literal

a -b -c

a

b

c

-a

b

c



proven : 

if we can solve MAX-CLIQUE in 

polynomial time, we can solve 3-SAT 
in polynomial time



since 3-SAT NP-hard,

MAX-CLIQUE is also NP-hard



3-SAT ≤p HAMILTONIAN-PATH

another reduction





3-SAT ≤p TRIANGLE PARTITION

another reduction



how do we proceed when 
encountering NP-hard 

problem?



tips 1: check constraint



SUBSET SUM


given an array N, find a 
subset that sums to K



SUBSET SUM is NP-hard

3-SAT ≤p NP-hard





SUBSET SUM


given an array N of positive integers, 
find a subset that sums to K


1 ≤ N, K ≤ 1000



tip 2: check for special 
property of the problem



given S = first N fibonaci number

{1,1,2,3,…}


determine whether you can 
partition S to two equal sum 

subset



SUBSET-SUM ≤p PARTITION-SUM



SUBSET-SUM

given array A and find subset with total K


<=>


PARTITION-SUM

find partition in A ∪ {K - (sum(A) - K)}



SUBSET-SUM

A : {1,2,3,4,5} K = 8


K - (1 + 2 + 3 + 4 + 5 - K) = 8 - (15 - 8) = 1


PARTITION-SUM

A : {1,2,3,4,5,1}



PARTITION-SUM itu NP-hard
so?



int main()  
{
  int n;
  cin >> n;
  puts(n % 3 == 1 ? “no” : “yes”);  
}
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given a graph, each node has a 
weight.


you want to choose subset of nodes 
with maximum total weight. any pair of 
chosen nodes must not be adjacent.



MAX INDEPENDENT SET

MAX CLIQUE ≤p MAX 
INDEPENDENT SET



the edges are added incrementally. for 
each i from 2 to N, given j (1 ≤ i < j) the 

edges added are either:

1. edges connecting j to i


2. edges connecting all j neighbours to i

3. both 1 and 2





special graph :

1. satisfies triangle inequality

2. planar

3. bipartite




Google Code Jam 
2008


Milkshakes



There are N milkshake flavors, each can be either 
prepared malted or not


There are M customers, each has a set of milkshakes that 
they like. At most one of them is malted. They will be 

happy if you have at least one of those type prepared.

Minimize the number of flavor that is malted to satisfy all 

customers


1 ≤ N, M ≤ 2000



EOF
Q&A?


