

Heavy Light Decomposition

prerequisite

know segment tree/
Bl

ae |
2

KNOW sparse tapble

i
_

before we learn, |
glive motivation first

given a tree. there Is a value on each node
there are Q queries, each in (a,b) form

count the total value for all node in the path
(a,b)

just LCA

given a tree. there Is a value on each node

there are Q queries, each in (a,b) form

count the total value for all node in the path
(a,b)

but in the middle of queries, there can be

value updates as well

HLD

decompose the tree to several paths

each path can be represented by

example

iNnvalid decomposition

—

\

valld decomposition

—

\

we call edge connecting two nodes Iin one
component as heavy edge
the rest is light edge

we want another decomposition
requirement

for each node v, the number of light
edge from v to root < Ig(N)

now to decompose

for each node u :
for each node v child of u,
if and only if size(v) > 1/2 * size(u),
then (u,v) Is a heavy edge

requirement checks

1. each component must be a path

of course, because each node u can have at most one child
with a heavy edge In between

requirement checks

2. from each node, path to root only has < Ig(N)
ight edges

prove this

requirement checks

2. from each node, path to root only has < Ig(N)
ight edges

assume not.
assume there are > Ig(N) light edges from root to node u.

requirement checks

2. from each node, path to root only has < Ig(N)
ight edges

let's say path from root to node u Is
V={v_1,v 2 v 3 ...,u}l. V>Ig(N)
w.l.0.g. assume all is conencted by light
edge

requirement checks

2. from each node, path to root only has < Ig(N)
ight edges

then size(v_2) < 1/2 size(v_1)
size(v_3) < 1/2 size(v_2)
size(v_4) < 1/2 size(v_3)

requirement checks

2. from each node, path to root only has < Ig(N)
ight edges

)

then size(v_2) < 1/2 size(v_1
size(v_3) < 1/4 size(v_1)
size(v_4) < 1/8 size(v_1)

size(U) < 1/ size(v_1)

requirement checks

2. from each node, path to root only has < Ig(N)
ight edges

Impossible
size(u) < 1/n size(v_1)

contradiction

now, the basic i1dea IS

for each node, traverse to root by
"skipping” heavy edges

we can simplity the previous problem so that all queries are to
the root, no”

assume
number=value
node

1+ (2+3+4) =
10

10 + (9+10+11)
= 40

40 + 23 = 63

how to know the total value In the
skipped heavy edges?

store total value
for each “path”

30

10

if there is an

update, just

update the
value

30 accordingly

problem:
what if the query
starts in the
query —> s 30 middle of a
path?

poroblem : or will
‘loin” In the
w0 30 middle of a path

need to be able
to find a partial
30 sum for each

query —> = bath

you will need a lot of BIT

better to make it OOP

class BIT {
public:
vector<int> v;

void init(int N) {
v.resize(N);

}

void update(int x,int y) {
for (int 1 = x; 1 < v.size(); 1 += (1 & -1)) {
vii] += y;

}

we can create two instances of BIT
example: find variance

BIT sum, sumsq;

sum.1init(N);
sumsqg.1nit (N);

for (int i = 0; i < N; ++i) {
sum.update (i, A[i]);
sumsqg.update(i, A[i] * A[i1i]);
}

// V = E(X"2) - (E(X))"2
V = (sumsqg.query(N) / N) - (sum.query(N) / N) ~ 2

so the HLD becomes something like
this

void dfs(int u) {

size[u] = 1;
for (int v : child[u]) {
dfs(v);

size[u] += size[V];

}

void dfs(int u, int componentRoot) {
componentRoot[u] = componentRoot;
1f (u == componentRoot) {
bit[u] = new BIT();
}
for (int v : child[u]) {
1if (2 * size[v] > size[u]) {
dfs (v, componentRoot);
} else {
dfs(v,v); // light edge, new path
}

the query

T query(int u) {
T ans;
while (u != null) {
int cRoot = componentRoot[u];
ans = merge(ans, bit[cRoot].query(cRoot, u));
u = parent[cRoot];

what If we want to find max instead of
sum®?

we cannot find max by max(u,root) -
max(V,root)

example, the
guery Is red to
11 green

need to be able

to do partial

11 guery in the
middle

T query(int u, int v) {
// assume v is an ancestor of u
T ans;
while (true) {
int cRoot = componentRoot[u];
1f (h[cRoot] > h[Vv]) {
// cRoot is still a descendent of v
ans = merge(ans, bit[cRoot].query(cRoot, u));
u = parent[cRoot];
} else {
ans = merge(ans, bit[cRoot].query(v, u));
break;

}
}

return ans;

what If the update can be a path?

segment tree
with lazy update

good luck coding it :)

let's practice some
task examples

S
PO
J
QTR
C
-
3

given tree with N nodes, each
node can be white or black

there can be two query types:
1. change the color of a node
2. from path u->v, which white node Is
traversed first?

how'?

