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prerequisite



know graph



know maxflow



know proof by 
induction



planar graph

a graph that can be drawn on a 
flat surface without crossing edge



planar graph

a graph that can be drawn on a 
flat surface without crossing edge



most important formula in planar 
graph: euler’s formula

V + F = E + 2

proof: induction



corollary

E ≤ 3V - 6, for V ≥ 3

proof: slightly complicated. on 
whiteboard instead



example
given unweighted graph, find APSP


V ≤ 1000, E ≤ 10^6


O(VE) no?



example
graph is planar


becomes O(V^2). cool



try to prove this

let’s say there are n points and the 
distance between a pair of points ≥ 1cm.


Prove that ≤ 3n pair of points with 
distance = 1cm



connect two points with 
distance 1cm with an edge, 

then the graph is planar

more detail on whiteboard



E ≤ 3V - 6

corollary 1 : there is a node with degree 
≤ 5


proof by contradiction



E ≤ 3V - 6

corollary 2 : six color theorem


know colouring graph?


proof by construction



choose any node with degree ≤ 5, let’s say u.


remove that node, graph is still planar. 
recursively colour the remaining graph.


since deg(u) ≤ 5, then there must be a colour 
that can be used for u that is not used by 

any of its neighbour



E ≤ 3V - 6
theorem : five color theorem


proof by construction, similar 
with six, minor modification



E ≤ 3V - 6

theorem : four color theorem


if we discuss the proof now, this 
camp ends next year



theorem : four color theorem


maximum clique on planar 
graph?



if there is a clique of size X, then 
you will need X colours to colour 

the clique


so need ≥ X to colour the graph



thus max clique size ≤ 4


can check clique size 4,

check clique size 3,

check clique size 2,


…



1 ≤ V ≤ 3000

1 ≤ E ≤ 6000



bipartite graph

graph which vertices can be 
partitioned to L, R such that any 

edge connects (l, r) where l is in L 
and r is in R



bipartite graph

warming up


given a bipartite graph, find the L and R partition


easy



max bipartite matching

maxflow O(VE)

complicated, too long to code



alternating path algorithm

the idea is actually the same, but because the 
graph is bipartite, the code is much simpler


every time you are currently in R, you know 
that there is only one neighbour with residual 

flow > 0



bool match(int x) {
  for (int y : adj[x]) if (!visited[y]) {
    visited[y] = true
    if (with[y] == -1 || match(with[y])) {
      with[y] = x
      return true
    }
  }
  return false
}

int countMCBM() {
  int res = 0
  reset(with, -1)
  for (int i = 0; i < L; ++i) {
    reset(visited, 0)
    if (match(i)) ++res
  }
  return res
}



start with randomized pair


becomes fast



max weighted bipartite 
matching?



bipartite matching application



given a graph in the form of two complete 
disconnected subgraphs. find the max clique


easy



given a graph in the form of two complete 
disconnected subgraphs and many edges 

connecting these two subgraphs. find the max clique


not easy anymore



konig’s theorem
max bipartite matching == min vertex cover


proof is omitted, but still feasible if you want to read


unlocks a whole new path



maximum independent set == V - min vertex cover


just take the nodes not in the vertex cover


this is for general graph



proof :


1 : if V’ is vertex cover, V - V’ is 
independent set


2 : if V’ is independent set, V - V’ is vertex 
cover



max clique == V - (min 
vertex cover in 

complement graph)



proof :


1 : if V’ is vertex cover, V - V’ in 
complement graph is clique


2 : if V’ is clique, V - V’ in complement 
graph is vertex cover



go back to this problem


given a graph in the form of two complete 
disconnected subgraphs. find the max clique



the graph is intentionally 
made so that the 

complement is bipartite



find min vertex cover in 
the complement graph



min path cover


given a directed graph, find the minimum number 
of path to cover all vertices


a path must not visit the same vertex twice



cannot (not yet) be 
polynomial, because of 

hamiltonian path problem



min path cover


find the minimum number of path 
to cover all vertices on DAG

note that hamiltonian path on DAG is in P

how?



create L = V, R = V

for each edge (i,j) in V, add a new edge from 

L(i) to R(j) in your new graph


min path cover == |V| - max bipartite matching



to understand why, we need to understand the 
representation of the matching


if L(i) is matched to R(j), we can say that the edge from L(i) 
to R(j) is used in one of our paths


number of path == number of nodes that has no outgoing 
edge used in the path == number of unmatched nodes in 

R



what if the paths are not 
necessarily disjoint?


transitive closure



perfect matching
if size L == size R


the size of matching = size L is 
usually said to be a perfect 

matching



perfect matching

for each X subset of L, say 

N(X) = {v : there is a u in X 

such that v is a neighbour of u}



perfect matching

if there is a perfect matching, 
then for each subset X of L,


|N(X)| ≥ |X|

obvious, otherwise X does not have a perfect matching



perfect matching

the not so obvious one (and cool)


if for each subset X of L, |N(X)| ≥ |X|, then there is a 
perfect matching


hall’s theorem



perfect matching

proof : induction


if |L| = 1, obvious



perfect matching
assume theorem works for |L|<m, we prove that it 

works for |L| = m


case 1 : suppose for each proper subset S of L, |
N(S)| > |S|


take any edge as a matching. the remaining graph 
satisfies the induction case



perfect matching
case 2 : suppose there is proper subset S of 

L, |N(S)| = |S|


graph (S, N(S)) satisfies induction case

graph (L - S, R - N(S)) satisfies induction 

case

we will have two disjoint perfect matchings



perfect matching
another sufficient condition


in regular bipartite graph, degree > 0, there is a 
perfect matching


not a necessary condition



dilworth’s theorem
in DAG, the minimum path cover == the maximum 

independent set


both u and v must not be in independent set if there is a 
path from u to v or v to u.


proof is also omitted but still feasible



ok now some tasks



given a grid N*N, some of the cells are holes.


you want to put the minimum number of 
vertical/horizontal board of length N so that all 

holes are covered


1 ≤ N ≤ 1000



given a directed complete 
graph. 


find the number of 
minimum path cover



int main() {
  puts(“1”)
}



given a bipartite graph, 
find edges which are part 
of ALL perfect matching





EOF
Q&A?


