Graph and Properties

Jonathan Irvin Gunawan

prerequisite

know graph

know maxflow

know proof by induction

planar graph

a graph that can be drawn on a flat surface without crossing edge

planar graph

a graph that can be drawn on a flat surface without crossing edge

most important formula in planar graph: euler's formula

$V+F=E+2$ proof: induction

corollary

$$
E \leq 3 V-6, \text { for } V \geq 3
$$

proof: slightly complicated. on whiteboard instead

example

given unweighted graph, find APSP $V \leq 1000, \mathrm{E} \leq 10^{\wedge} 6$

O(VE) no?

example

graph is planar

becomes $\mathrm{O}\left(\mathrm{V}^{\wedge} 2\right)$. cool

try to prove this

let's say there are n points and the distance between a pair of points $\geq 1 \mathrm{~cm}$. Prove that $\leq 3 n$ pair of points with distance $=1 \mathrm{~cm}$
connect two points with distance 1 cm with an edge, then the graph is planar more detail on whiteboard

$$
E \leq 3 V-6
$$

corollary 1 : there is a node with degree ≤ 5
proof by contradiction

$$
E \leq 3 V-6
$$

corollary 2 : six color theorem

know colouring graph?

proof by construction
choose any node with degree ≤ 5, let's say u.
remove that node, graph is still planar. recursively colour the remaining graph.
since $\operatorname{deg}(u) \leq 5$, then there must be a colour that can be used for u that is not used by any of its neighbour

$$
E \leq 3 V-6
$$

theorem : five color theorem
proof by construction, similar with six, minor modification

$$
E \leq 3 V-6
$$

theorem : four color theorem

if we discuss the proof now, this camp ends next year

theorem : four color theorem

maximum clique on planar graph?

if there is a clique of size X, then you will need X colours to colour the clique
so need $\geq X$ to colour the graph
thus max clique size ≤ 4
can check clique size 4, check clique size 3, check clique size 2,

$1 \leq \mathrm{V} \leq 3000$ $1 \leq \mathrm{E} \leq 6000$

bipartite graph

graph which vertices can be

 partitioned to L, R such that any edge connects (I, r) where I is in L and r is in R
bipartite graph

warming up
given a bipartite graph, find the L and R partition

easy

max bipartite matching

maxflow $\mathrm{O}(\mathrm{VE})$
complicated, too long to code

alternating path algorithm

the idea is actually the same, but because the graph is bipartite, the code is much simpler
every time you are currently in R, you know that there is only one neighbour with residual
flow >0

```
bool match(int x) {
    for (int y : adj[x]) if (!visited[y]) {
        visited[y] = true
        if (with[y] == -1 || match(with[y])) {
        with[y] = x
        return true
        }
    }
    return false
}
int countMCBM() {
    int res = 0
    reset(with, -1)
    for (int i = 0; i < L; ++i) {
        reset(visited, 0)
        if (match(i)) ++res
    }
    return res
}
```


start with randomized pair

becomes fast
max weighted bipartite matching?

bipartite matching application

given a graph in the form of two complete disconnected subgraphs. find the max clique

easy

given a graph in the form of two complete disconnected subgraphs and many edges connecting these two subgraphs. find the max clique

not easy anymore

konig's theorem

max bipartite matching == min vertex cover
proof is omitted, but still feasible if you want to read
unlocks a whole new path
maximum independent set $==\mathrm{V}$ - min vertex cover
just take the nodes not in the vertex cover
this is for general graph

proof :

1 : if V^{\prime} is vertex cover, $\mathrm{V}-\mathrm{V}$ ' is independent set

2 : if V^{\prime} is independent set, $\mathrm{V}-\mathrm{V}^{\prime}$ is vertex cover

max clique $==$ V - (min vertex cover in complement graph)

proof :

1 : if V^{\prime} is vertex cover, $\mathrm{V}-\mathrm{V}^{\prime}$ in complement graph is clique

2 : if V^{\prime} is clique, V - V^{\prime} in complement graph is vertex cover

go back to this problem

given a graph in the form of two complete disconnected subgraphs. find the max clique

the graph is intentionally made so that the

 complement is bipartite
find min vertex cover in the complement graph

min path cover

given a directed graph, find the minimum number of path to cover all vertices
a path must not visit the same vertex twice

cannot (not yet) be polynomial, because of hamiltonian path problem

min path cover

find the minimum number of path to cover all vertices on DAG

note that hamiltonian path on DAG is in P how?

create $\mathrm{L}=\mathrm{V}, \mathrm{R}=\mathrm{V}$

for each edge (i,j) in V, add a new edge from L(i) to R(j) in your new graph
min path cover $==|\mathrm{V}|-$ max bipartite matching
to understand why, we need to understand the representation of the matching
if $L(i)$ is matched to $R(j)$, we can say that the edge from $L(i)$ to $R(j)$ is used in one of our paths
number of path $==$ number of nodes that has no outgoing edge used in the path $==$ number of unmatched nodes in

R
what if the paths are not necessarily disjoint?
transitive closure

perfect matching

$$
\text { if size } L==\text { size } R
$$

the size of matching $=$ size L is usually said to be a perfect matching

perfect matching

for each X subset of L, say $N(X)=\{v$: there is a u in X such that v is a neighbour of $u\}$

perfect matching

if there is a perfect matching, then for each subset X of L,

$$
|N(X)| \geq|X|
$$

obvious, otherwise X does not have a perfect matching

perfect matching

the not so obvious one (and cool)
if for each subset X of $L,|N(X)| \geq|X|$, then there is a perfect matching

hall's theorem

perfect matching

proof : induction

$$
\text { if }|ㄴ|=1 \text {, obvious }
$$

perfect matching

assume theorem works for $|L|<m$, we prove that it works for $|\mathrm{L}|=m$
case 1: suppose for each proper subset S of L, |

$$
N(S)|>|S|
$$

take any edge as a matching. the remaining graph satisfies the induction case

perfect matching

case 2 : suppose there is proper subset S of

$$
L,|N(S)|=|S|
$$

graph (S, N(S)) satisfies induction case graph (L-S, R - N(S)) satisfies induction case
we will have two disjoint perfect matchings

perfect matching

another sufficient condition
in regular bipartite graph, degree >0, there is a perfect matching
not a necessary condition

dilworth's theorem

in DAG, the minimum path cover $==$ the maximum independent set
both u and v must not be in independent set if there is a path from u to v or v to u.
proof is also omitted but still feasible

ok now some tasks

given a grid $N^{*} N$, some of the cells are holes.
you want to put the minimum number of vertical/horizontal board of length N so that all holes are covered

$$
1 \leq N \leq 1000
$$

given a directed complete

graph.

find the number of minimum path cover
int main() \{ puts("1")
\}

given a bipartite graph, find edges which are part of ALL perfect matching

Q\&A?

