

Graph and Properties

Jonathan Irvin Gunawan

prerequisite

know graph

know maxflow

know proof by
induction

planar graph

a graph that can be drawn on a
flat surface without crossing edge

planar graph

a graph that can be drawn on a
flat surface without crossing edge

most important formula in planar
graph: euler’s formula

V + F = E + 2

proof: induction

corollary

E ≤ 3V - 6, for V ≥ 3

proof: slightly complicated. on
whiteboard instead

example
given unweighted graph, find APSP

V ≤ 1000, E ≤ 10^6

O(VE) no?

example
graph is planar

becomes O(V^2). cool

try to prove this

let’s say there are n points and the
distance between a pair of points ≥ 1cm.

Prove that ≤ 3n pair of points with
distance = 1cm

connect two points with
distance 1cm with an edge,

then the graph is planar

more detail on whiteboard

E ≤ 3V - 6

corollary 1 : there is a node with degree
≤ 5

proof by contradiction

E ≤ 3V - 6

corollary 2 : six color theorem

know colouring graph?

proof by construction

choose any node with degree ≤ 5, let’s say u.

remove that node, graph is still planar.
recursively colour the remaining graph.

since deg(u) ≤ 5, then there must be a colour
that can be used for u that is not used by

any of its neighbour

E ≤ 3V - 6
theorem : five color theorem

proof by construction, similar
with six, minor modification

E ≤ 3V - 6

theorem : four color theorem

if we discuss the proof now, this
camp ends next year

theorem : four color theorem

maximum clique on planar
graph?

if there is a clique of size X, then
you will need X colours to colour

the clique

so need ≥ X to colour the graph

thus max clique size ≤ 4

can check clique size 4,

check clique size 3,

check clique size 2,

…

1 ≤ V ≤ 3000

1 ≤ E ≤ 6000

bipartite graph

graph which vertices can be
partitioned to L, R such that any

edge connects (l, r) where l is in L
and r is in R

bipartite graph

warming up

given a bipartite graph, find the L and R partition

easy

max bipartite matching

maxflow O(VE)

complicated, too long to code

alternating path algorithm

the idea is actually the same, but because the
graph is bipartite, the code is much simpler

every time you are currently in R, you know
that there is only one neighbour with residual

flow > 0

bool match(int x) {
 for (int y : adj[x]) if (!visited[y]) {
 visited[y] = true
 if (with[y] == -1 || match(with[y])) {
 with[y] = x
 return true
 }
 }
 return false
}

int countMCBM() {
 int res = 0
 reset(with, -1)
 for (int i = 0; i < L; ++i) {
 reset(visited, 0)
 if (match(i)) ++res
 }
 return res
}

start with randomized pair

becomes fast

max weighted bipartite
matching?

bipartite matching application

given a graph in the form of two complete
disconnected subgraphs. find the max clique

easy

given a graph in the form of two complete
disconnected subgraphs and many edges

connecting these two subgraphs. find the max clique

not easy anymore

konig’s theorem
max bipartite matching == min vertex cover

proof is omitted, but still feasible if you want to read

unlocks a whole new path

maximum independent set == V - min vertex cover

just take the nodes not in the vertex cover

this is for general graph

proof :

1 : if V’ is vertex cover, V - V’ is
independent set

2 : if V’ is independent set, V - V’ is vertex
cover

max clique == V - (min
vertex cover in

complement graph)

proof :

1 : if V’ is vertex cover, V - V’ in
complement graph is clique

2 : if V’ is clique, V - V’ in complement
graph is vertex cover

go back to this problem

given a graph in the form of two complete
disconnected subgraphs. find the max clique

the graph is intentionally
made so that the

complement is bipartite

find min vertex cover in
the complement graph

min path cover

given a directed graph, find the minimum number
of path to cover all vertices

a path must not visit the same vertex twice

cannot (not yet) be
polynomial, because of

hamiltonian path problem

min path cover

find the minimum number of path
to cover all vertices on DAG

note that hamiltonian path on DAG is in P

how?

create L = V, R = V

for each edge (i,j) in V, add a new edge from

L(i) to R(j) in your new graph

min path cover == |V| - max bipartite matching

to understand why, we need to understand the
representation of the matching

if L(i) is matched to R(j), we can say that the edge from L(i)
to R(j) is used in one of our paths

number of path == number of nodes that has no outgoing
edge used in the path == number of unmatched nodes in

R

what if the paths are not
necessarily disjoint?

transitive closure

perfect matching
if size L == size R

the size of matching = size L is
usually said to be a perfect

matching

perfect matching

for each X subset of L, say

N(X) = {v : there is a u in X

such that v is a neighbour of u}

perfect matching

if there is a perfect matching,
then for each subset X of L,

|N(X)| ≥ |X|

obvious, otherwise X does not have a perfect matching

perfect matching

the not so obvious one (and cool)

if for each subset X of L, |N(X)| ≥ |X|, then there is a
perfect matching

hall’s theorem

perfect matching

proof : induction

if |L| = 1, obvious

perfect matching
assume theorem works for |L|<m, we prove that it

works for |L| = m

case 1 : suppose for each proper subset S of L, |
N(S)| > |S|

take any edge as a matching. the remaining graph
satisfies the induction case

perfect matching
case 2 : suppose there is proper subset S of

L, |N(S)| = |S|

graph (S, N(S)) satisfies induction case

graph (L - S, R - N(S)) satisfies induction

case

we will have two disjoint perfect matchings

perfect matching
another sufficient condition

in regular bipartite graph, degree > 0, there is a
perfect matching

not a necessary condition

dilworth’s theorem
in DAG, the minimum path cover == the maximum

independent set

both u and v must not be in independent set if there is a
path from u to v or v to u.

proof is also omitted but still feasible

ok now some tasks

given a grid N*N, some of the cells are holes.

you want to put the minimum number of
vertical/horizontal board of length N so that all

holes are covered

1 ≤ N ≤ 1000

given a directed complete
graph.

find the number of
minimum path cover

int main() {
 puts(“1”)
}

given a bipartite graph,
find edges which are part
of ALL perfect matching

EOF
Q&A?

