Not One of Them	
Costly Binary Search	
Log Drivin' Hirin'	Topic-related tasks
City Hall	
Harbingers	Still DP
Camel and Oases	
Shores	"Stolen" from a contest, sorted by (expected) hardest to easiest
Sending Blessings	
Go To Goal	
Healthy Lifestyle	
Frequent Alphabet	

I	Not One of Them	
C	Costly Binary Search	Topic-related tasks
B	Log Drivin' Hirin'	
D	City Hall	
K	Carbingers	Still DP

as promised, one more task that has not been discussed yesterday

IOI 2014 Holiday (reduced)
given N cities in a line. City i has value $A[i]$. You start at city 0 . In one day, you can either move to neighbouring city or take the value (at most once) of the current city.

For each $d=0 . .2 \mathrm{~N}$, determine the maximum total value you can get if you have d days

$$
1 \leq N \leq 100 k
$$

find the value of single d can be done in $\mathrm{O}(\mathrm{N} \lg \mathrm{N})$ by iterating which rightmost city to be visited.
let opt(d) = the farthest city you visit when you have d days in the optimal solution.
we have opt(d) $\leq \operatorname{opt}(d+1)$

Graph Connectivity

Jonathan Irvin Gunawan

$$
\begin{aligned}
& \text { let's practice some } \\
& \text { tasks }
\end{aligned}
$$

IOI 2015 Practice Graph

given a graph and two nodes A, B. determine how many vertices which, if removed, disconnects A and B

$$
\begin{aligned}
& 1 \leq N \leq 100.000 \\
& 0 \leq M \leq 200.000
\end{aligned}
$$

run DFS tree with root $=A$

the possible candidate vertices are vertices in the path from A to B

node u is an answer if

let's say v is a child of u where $v=$ ancestor(B). dfs_low[v] \geq dfs_num[u]

more

https://www.hackerearth.com/practice/
algorithms/graphs/strongly-connected-components/practice-problems/algorithm/ a-walk-to-remember-qualifier2/
given a directed graph, for each node, determine whether there is a cycle staring from the node

$$
\begin{aligned}
& 1 \leq N \leq 100.000 \\
& 1 \leq M \leq 200.000
\end{aligned}
$$

just check for each node whether that node is alone in the SCC

one more

http://acm.timus.ru/forum/thread.aspx? $i d=22089 \& u p d=633721365703625916$
given a directed graph, determine which nodes can go to ALL other nodes.

$$
\begin{aligned}
& 1 \leq N \leq 100.000 \\
& 0 \leq M \leq 200.000
\end{aligned}
$$

so the observation is, if a and b is in one SCC, then the set of vertices that can be visited by a and b is exactly the same.
therefore, run SCC, group nodes in one SCC to be one node.

There is an edge from SCC node a to $b<=>$ there is an edge from node u to v where u is in a and v is in b
this technique is quite common. let's name it SCC graph
now we got a DAG (otherwise SCC is not optimal)
then, just choose a candidate node (vertex without an indegree), then check whether that node can visit all other nodes

last

ICPC Jakarta Regional 2012 Unique Path
given a graph, find the number of pair of nodes with unique path

$$
\begin{aligned}
& 2 \leq N \leq 10 k \\
& 1 \leq M \leq 100 k
\end{aligned}
$$

Q\&A?

