

XOR Queries

Topic-related
tasks

Count on Tree

Sign on Fence

Forbidden Sum

Let There be Rainbows

Grid City

“Stolen” from a
contest, sorted by

(expected)
hardest to easiest

Goofy Golf

Collecting Apples

Door of the Ancient

Presidential Game

Odd GCD Matching

H XOR Queries

Topic-related
tasks

K Count on Tree

G Sign on Fence

F Forbidden Sum

J Let There be Rainbows

A Grid City

“Stolen” from a
contest, sorted by

(expected)
hardest to easiest

B Goofy Golf

C Collecting Apples

D Door of the Ancient

I Presidential Game

E Odd GCD Matching

Dynamic Programming
Optimisation

Jonathan Irvin Gunawan

µ
A B
∑ ☺ τ
θ γ δ λ ψ ω E ∆ α

♙ ♙ ♙ ♙ ♙ ♙ ♖ ♘ ♗ ♕ ♔ ♗ ♘ ♖ ♙ ♙ ♙ ♙ ♙ ♙

prerequisite

dynamic
programming (dp)

convex hull

divide and conquer

let’s start simple

dp with reversed
state

useful when you have a dp where
the possible state are large, but

the possible values are small

example:
given 0/1 knapsack problem

1 ≤ N ≤ 100
1 ≤ Wi, W ≤ 1e9

1 ≤ Vi ≤ 100

usual knapsack solution is
O(N*W), does not work for this

problem

notice that the constraint
for the values is small

instead of dp[total_weight] =
max_value, we can reverse the

state and the value

dp2[total_value] = min_weight
in order get a total value of total_value,
what is the minimum total weight of the

items

reset(dp, INT_MIN), dp[0] = 0
for i in 1..N
for j in W..0

dp[x] = max(dp[x], dp[x - w[i]] + v[i])

reset(dp2, INT_MAX), dp[0] = 0
for i in 1..N

for j in sum(Vi)..0
dp2[x] = min(dp2[x], dp2[x - v[i]] + w[i])

the answer is the maximum v
that still satisfies dp2[v] ≤ W

this is now
O(N * sum(Vi))

next

convex hull
optimization

not specific for dp, but quite
often used as dp optimisation

basic formulation:
given N lines y = m*x + c.

there are Q queries. at x=xi, which line
produces the minimum m*xi + c

idea: each line can be the
minimum for a contiguous

values of x (can be unbounded)

green is
minimum line
(upper hull)

once we know the interval
endpoints, we can answer each

query using binary search

how to find interval
endpoints?

note that the upper hull
will have decreasing slope

similar to graham scan: sort the
lines by slope and maintain a

stack

keep popping lines from
stack if they are obsoleted

struct Line {
 int m, c;
 int calc(int x) {
 return m * x + c;
 }
};

// a.m > b.m > c.m
bool obsolete(Line a, Line b, Line c) {
 // a and c intersect at
 // x_ac = (c.c - a.c) / (a.m - c.m)
 // a and b intersect at
 // x_ab = (b.c - a.c) / (a.m - b.m)

 // b is obsolete if x_ac < x_ab
 return (c.c - a.c) * (a.m - b.m)
 < (a.m - c.m) * (b.c - a.c)
}

vector<Line> lines;
void insert(Line l) {
 while (lines.size() > 1) {
 int sz = lines.size();
 if (obsolete(lines[sz - 2], lines[sz - 1],
 l)) {
 lines.pop_back();
 } else break;
 }
 lines.push_back(l);
}

example problem

APIO 2010
Commando

Given array X of N integers . You want to
partition them contiguously such that the
sum for a * sum(X_i)^2 + b * sum(X_i) + c

among all partitions is maximized.

N ≤ 1e6
-5 ≤ a ≤ -1

|b|, |c| ≤ 1e7
 1 ≤ X[i] ≤ 100

simple dp
dp[i] = maximum sum only considering

X[1..i]

dp[0] = 0
dp[i] = max(1≤j≤i)

a * (pre[i] - pre[j-1])^2
+ b * (pre[i] - pre[j-1]) + c + dp[j-1]

let pj = pre[j-1], pi = pre[i]
dp[i] = max(1≤i≤j)

a * (pi-pj)^2 + b * (pi - pj) + c + dp[j-1]
a*pi^2 - a*2*pi*pj + a*pj^2 + b*pi - b*pj + c + dp[j-1]

a*pi^2 + b*pi + c
+ pi * (-a*2*pj)

+ a*pj^2 - b*pj + dp[j-1]

dp[i] = a*pi^2 + b*pi + c +
max(1≤j≤i)

+ pi * (-a*2*pj)
+ a*pj^2 - b*pj + dp[j-1]

insert line m = (-a*2*pj), c = (a*pj^2 - b*pj + dp[j+1])

(-2*a*pj) increases with larger j (-2*a is positive)
gradient is increasing

dp[i] = a*pi^2 + b*pi + c +
max(1≤j≤i)

+ pi * (-a*2*pj)
+ a*pj^2 - b*pj + dp[j-1]

insert line m = (-a*2*pj), c = (a*pj^2 - b*pj + dp[j+1])

query is pi, also increases with larger i
binary search is not needed

O(N)

O👎

what if gradient might
not be monotonic?

find where the lines should be (based on gradient)
remove obsoleted lines to the left and to the right

use std::set for removal in the middle of data
structure

amortized logarithmic
time

next

dp dnc

let’s say the common dp
dp[i][j] = min(1≤k≤N)
dp[i-1][k] + cost(i,j,k)

let’s say the common dp
dp[i][j] = min(1≤k≤N)
dp[i-1][k] + cost(i,j,k)

and OPT(i, j) ≤ OPT(i, j + 1)

find dp[i][1..N] can
be done in O(N lg N)

find dp[N/2] first
then we can find opt of dp[1..N/2]

only in 1..opt(N/2)
and dp[N/2..N]

only in opt(N/2)..N

void dnc(int L, int R, int optL, int optR) {
 if (L > R) {
 return;
 }
 int M = (L + R) >> 1;
 int opt = optL;
 for (int i = optL; i <= optR; ++i) {
 if (cost(M, opt) < cost(M, i)) {
 opt = i;
 }
 }
 dp[M] = cost(M, opt);
 dnc(L, M - 1, optL, opt);
 dnc(M + 1, R, opt, optR);
}

each layer takes at most 2N
iterations

there are O(lg N) layers
total O(N lg N)

example

https://www.hackerrank.com/
contests/world-codesprint-5/

challenges/mining

given N mines.
mine i is located X[i] from the left and contains W[i] gold

we need to gather the gold to only K “pick-up” mines
moving gold from mine i to mine j takes

|X[i] - X[j]| cost
determine minimum cost

1 ≤ N, K ≤ 5000
X is increasing

dp[rem][i] = minimum cost of gathering
gold[i..N] to rem pick-up mines

dp[rem][i] = min(j≥i)
dp[rem-1][j+1] + gather cost(i,j)

O(KN^2)

we can find dp[rem][1..N] in
O(N lg N)

OPT(i + 1) ≥ OPT(i)
proof by contradiction

suppose OPT(i) = k, OPT(i+1) = j, j < k

dp[i] ≤ dp[i+1]
cost(i,k) + dp’[k+1] ≤ cost(i+1,j) + dp’[j+1]

OPT(i+1) = j
cost(i+1,j) + dp’[j+1] ≤ cost(i+1,k) + dp’[k+1]

therefore
cost(i,k) + dp’[k+1] ≤ cost(i+1,k) + dp’[k+1]

cost(i,k) + dp’[k+1] ≤ cost(i+1,k) + dp’[k+1]
cost(i,k) ≤ cost(i+1,k)

contradiction

O(K*N*lg N)

another dnc task

Codeforces Round #406
(Div 1) problem C

Codeforces Round #406
(Div 1) problem C

Given N people in a line, each having a color.
For each 1≤k≤N, we want to partition the

people so that each group is a contiguous
interval and has at most k distinct colours.
Determine the minimum number of groups

1 ≤ N ≤ 1e5

int naive(int k) // do naively in O(N)

void solve(int l, int r) {
 if (l + 1 >= r) return;
 int mid = l + r >> 1;
 ans[mid] = ans[l] == ans[r]
 ? ans[l] : naive(mid);
 solve(l, mid);
 solve(mid, r);
}

ans[1] = naive(1);
ans[n] = 1;
solve(1, n);

last

dp knuth-yao
optimisation

let’s say the common dp
dp[i][j] = cost(i,j) + min(i≤k<j)

dp[i][k] + dp[k+1][j]

let’s say the common dp
dp[i][j] = cost(i,j) + min(i≤k<j)

dp[i][k] + dp[k+1][j]

and OPT(i,j-1) ≤ OPT(i,j) ≤ OPT(i+1,j)

it’s obvious that the loop can be
optimized

but what’s the total running time
now?

i

j

i

j

i

j

sum of at most N opt(i,j) =
O(N^2)

basically each dp(i,j) is
amortized O(1)

cost(i,j) ≤ cost(i,j+1) and
cost(i,i+1) + cost(i+1,i+2) ≤ cost(i,i+2) +

cost(i+1,i+1)

implies

OPT(i,j-1) ≤ OPT(i,j) ≤ OPT(i+1,j)

proof is just messy math
work

left for exercise

cost(i,i+1) + cost(i+1,i+2) ≤
cost(i,i+2) + cost(i+1,i+1)

means broader range have more
cost (e.g., quadratic function)

classic usage:
optimal binary search

tree problem

given N elements. i-th element is
going to be queried E[i] times.
construct the optimal binary
search tree to minimize total

query time.

ok let’s do some tasks

SPOJ ACQUIRE

Given N rectangular plots with width and
height. You can buy one land to cover a

group for rectangular plots where the cost is
maximum width * maximum height

Determine minimum total cost to cover all
rectangular plots

1 ≤ N ≤ 50k

https://www.hackerrank.com/
contests/worldcupsemifinals/

challenges/find-number/
problem

You are guessing a number X between 1 to N. Each
guess you can give P and Q (0 ≤ P ≤ Q ≤ N). You
are told whether X ≤ P, P < X ≤ Q, or Q < X and

need to pay $A, $B, or $C respectively
Find minimum cost to get X

1 ≤ N ≤ 1e15
1 ≤ A,B,C ≤ 100

example, N = 10, A = 1, B = 2, C = 3. answer=5

APIO 2014
Split the Sequence

You have array A of N elements. You want to do this
K times:

1. Choose any array that has more than one element
2. Split the array into two

3. Point increased by multiplication of sums of
elements of the two splitted arrays

Find maximum total number of points

2 ≤ N ≤ 1e5
1 ≤ K ≤ min(N-1,200)

Topcoder SRM 708
PalindromicSubseq

There is a string of N characters.
For each i, calculate the number of

palindromic subsequences containing i-th
character.

The same character on different indices
are considered different.

1 ≤ N ≤ 3000

EOF
Q&A?

