XOR Queries	
Count on Tree	Topic-related tasks
Forbidden Sum	
Let There be Rainbows	
Grid City	"Stolen" from a contest, sorted by (expected) hardest to easiest
Door of the Ancient	Presidential Game

H	XOR Queries	Topic-related tasks
K	Count on Tree	
G	Sign on Fence	
F	Forbidden Sum	
J	Let There be Rainbows	
A	Grid City	"Stolen" from a contest, sorted by (expected) hardest to easiest
B	Goofy Golf	
C	Collecting Apples	
D	Door of the Ancient	
1	Presidential Game	
E	Odd GCD Matching	

Dynamic Programming Optimisation

Jonathan Irvin Gunawan

$$
\begin{aligned}
& \text { U } \\
& \text { A B } \\
& \Sigma \text { © } \\
& \theta \gamma \delta \lambda \psi \omega E \Delta a
\end{aligned}
$$

prerequisite

dynamic

 programming (dp)convex hull

divide and conquer

let's start simple

dp with reversed

state

useful when you have a dp where the possible state are large, but the possible values are small

example: given 0/1 knapsack problem

$$
\begin{gathered}
1 \leq N \leq 100 \\
1 \leq W i, W \leq 1 e 9 \\
1 \leq V i \leq 100
\end{gathered}
$$

usual knapsack solution is $\mathrm{O}\left(\mathrm{N}^{*} \mathrm{~W}\right)$, does not work for this problem

notice that the constraint for the values is small
instead of dp[total_weight] = max_value, we can reverse the state and the value

dp2[total_value] = min_weight

 in order get a total value of total_value, what is the minimum total weight of the items
reset(dp, INT_MIN), dp[0] = 0 for i in $1 . . \mathrm{N}$ for j in W.. 0
 $d p[x]=\max (d p[x], d p[x-w[i]]+v[i])$

reset(dp2, INT_MAX), dp[0] = 0 for i in $1 . . \mathrm{N}$
 for j in sum(Vi).. 0 $d p 2[x]=\min (d p 2[x], d p 2[x-v[i]]+w[i])$

the answer is the maximum v that still satisfies dp2[v] $\leq W$

this is now
 $\mathrm{O}(\mathrm{N}$ * $\operatorname{sum}(\mathrm{Vi}))$

next

convex hull optimization

not specific for dp, but quite often used as dp optimisation
basic formulation:
given N lines $y=m^{*} x+c$.
there are Q queries. at $\mathrm{x}=\mathrm{xi}$, which line produces the minimum $m^{*} x i+c$
idea: each line can be the minimum for a contiguous values of x (can be unbounded)

green is minimum line (upper hull)

once we know the interval endpoints, we can answer each query using binary search

how to find interval endpoints?

note that the upper hull

 will have decreasing slope
similar to graham scan: sort the lines by slope and maintain a stack

keep popping lines from stack if they are obsoleted

struct Line \{
int m, c;
int calc(int $x)$ \{
return m * $x+c$;
\}
\};
// a.m > b.m > c.m
bool obsolete(Line a, Line b, Line c) \{ // a and c intersect at // x_ac = (c.c - a.c) / (a.m - c.m) // a and b intersect at
// x_ab = (b.c - a.c) / (a.m - b.m)
// b is obsolete if x ac $<\mathrm{x}$ ab return (c.c - a.c) * (a.m - b.m)
$<(a . m-c . m) *(b . c-a . c)$
\}
vector<Line> lines;
void insert(Line l) \{
while (lines.size() > 1) \{
int sz = lines.size();
if (obsolete(lines[sz - 2], lines[sz - 1],
l)) \{
lines.pop_back();
\} else break;
\}
lines.push_back(l);
\}
example problem

APIO 2010 Commando

Given array X of N integers. You want to partition them contiguously such that the sum for a * sum(X_i)^2 + b * sum $\left(X _i\right)+c$ among all partitions is maximized.

$$
\begin{gathered}
N \leq 1 e 6 \\
-5 \leq a \leq-1 \\
|b|,|c| \leq 1 e 7 \\
1 \leq X[i] \leq 100
\end{gathered}
$$

simple dp

$\mathrm{dp}[\mathrm{i}]=$ maximum sum only considering X[1..i]

$$
\begin{gathered}
d p[0]=0 \\
d p[i]=\max (1 \leq j \leq i) \\
a^{*}(\operatorname{pre}[i]-\operatorname{pre}[j-1])^{\wedge} 2 \\
+b^{*}(\operatorname{pre}[i]-\operatorname{pre}[j-1])+c+d p[j-1]
\end{gathered}
$$

$$
\begin{gathered}
\text { let } p j=\operatorname{pre}[j-1], p i=\operatorname{pre}[i] \\
d p[i]=\max (1 \leq i \leq j) \\
a^{*}(p i-p j)^{\wedge} 2+b b^{*}(p i-p j)+c+d p[j-1] \\
\mathbf{a}^{*} \mathbf{p i}^{\wedge} 2-a^{*} 2^{*} \mathbf{p i}^{*} p j+\mathbf{a}^{*} j^{\wedge} 2+b^{*} p i-b^{*} p j+\mathbf{c}+d p[j-1]
\end{gathered}
$$

$$
\begin{gathered}
a^{*} p i^{\wedge} 2+b^{*} p i+c \\
+p^{*}\left(-a^{*} 2^{*} p j\right) \\
+a^{*} p j^{\wedge} 2-b^{*} p j+d p[j-1]
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{dp}[\mathrm{i}]=\mathbf{a}^{*} \mathrm{pi}^{\wedge} \mathbf{2}+\mathbf{b}^{*} \mathbf{p i}+\mathbf{c}+ \\
& \max (1 \leq j \leq i) \\
& +\mathrm{pi}^{*}\left(-\mathrm{a}^{*} \mathbf{2}^{*} \mathrm{pj}\right) \\
& +a^{*} p j^{\wedge} 2-b^{*} p j+d p[j-1]
\end{aligned}
$$

insert line $m=\left(-a^{*} 2^{*} p j\right), c=\left(a^{*} p j^{\wedge} 2-b^{*} p j+d p[j+1]\right)$
$\left(-2^{*} \mathrm{a}^{*} \mathrm{pj}\right)$ increases with larger $\mathrm{j}\left(-2^{*} \mathrm{a}\right.$ is positive) gradient is increasing

$$
\begin{aligned}
& \text { dp }[i]= a^{*} p i^{\wedge} 2+b^{*} p i+c+ \\
& \max (1 \leq j \leq i)^{+p i}+\left(-a^{*} 2^{*} p j\right) \\
&+a^{*} p j^{\wedge} 2-b^{*} p j+d p[j-1]
\end{aligned}
$$

insert line $m=\left(-a^{*} 2^{*} p j\right), c=\left(a^{*} p j^{\wedge} 2-b^{*} p j+d p[j+1]\right)$
query is pi, also increases with larger i binary search is not needed

$$
\mathrm{O}
$$

what if gradient might not be monotonic?

find where the lines should be (based on gradient) remove obsoleted lines to the left and to the right use std:: set for removal in the middle of data structure

amortized logarithmic

time

next

dp dnc

$$
\begin{gathered}
\text { let's say the common dp } \\
d p[i][j]=\min (1 \leq k \leq N) \\
d p[i-1][k]+\operatorname{cost}(i, j, k)
\end{gathered}
$$

let's say the common dp $d p[i][j]=\min (1 \leq k \leq N)$ $\mathrm{dp}[\mathrm{i}-1][\mathrm{k}]+\operatorname{cost}(\mathrm{i}, \mathrm{j}, \mathrm{k})$

and $\operatorname{OPT}(i, j) \leq \operatorname{OPT}(i, j+1)$

find $d p[i][1 . . N]$ can be done in $\mathrm{O}(\mathrm{N} \lg \mathrm{N})$

find dp[N/2] first
then we can find opt of dp[1..N/2]
only in 1..opt(N/2)
and dp[N/2..N]
only in opt(N/2)..N
void dnc(int L, int R, int opt, int opt) \{ if (L > R) \{ return;
\}
int $M=(L+R) \gg 1$;
int opt $=$ opt;
for (int $i=o p t L ; ~ i<=o p t R ;++i) ~\{$
if (cos t(M, opt) < cost (M, i)) \{ opt = i;
\}
\}
dp $[M]=\operatorname{cost}(M$, opt);
dnc(L, M - 1, optL, opt); inc $(M+1, R$, opt, opt);
each layer takes at most 2N iterations there are $\mathrm{O}(\lg \mathrm{N})$ layers total $\mathrm{O}(\mathrm{N} \lg \mathrm{N})$

example

https://www.hackerrank.com/ contests/world-codesprint-5/ challenges/mining
given N mines.
mine i is located $X[i]$ from the left and contains $W[i]$ gold we need to gather the gold to only K "pick-up" mines moving gold from mine i to mine j takes
$|X[i]-X[j]|$ cost
determine minimum cost
$1 \leq N, K \leq 5000$
X is increasing
$\mathrm{dp}[$ rem $][\mathrm{i}]=$ minimum cost of gathering gold[i..N] to rem pick-up mines
$d p[r e m][i]=\min (j \geq i)$
dp[rem-1][j+1] + gather cost(i,j)
$\mathrm{O}(\mathrm{KN} \wedge 2)$

we can find dp[rem][1..N] in $\mathrm{O}(\mathrm{N} \lg \mathrm{N})$

$\mathrm{OPT}(\mathrm{i}+1) \geq \mathrm{OPT}(\mathrm{i})$
proof by contradiction
suppose OPT(i) $=k$, OPT $(i+1)=j, j<k$

$$
d p[i] \leq d p[i+1]
$$

$\operatorname{cost}(i, k)+d p^{\prime}[k+1] \leq \operatorname{cost}(\mathbf{i}+\mathbf{1}, \mathbf{j})+\mathbf{d p}{ }^{\prime}[\mathbf{j}+\mathbf{1}]$

OPT $(i+1)=j$
$\operatorname{cost}(i+1, j)+d p^{\prime}[j+1] \leq \operatorname{cost}(i+1, k)+d p^{\prime}[k+1]$
therefore
$\operatorname{cost}(i, k)+d p^{\prime}[k+1] \leq \operatorname{cost}(i+1, k)+d p^{\prime}[k+1]$
$\operatorname{cost}(i, k)+d p^{\prime}[k+1] \leq \operatorname{cost}(i+1, k)+d p^{\prime}[k+1]$ $\operatorname{cost}(i, k) \leq \operatorname{cost}(i+1, k)$

contradiction

$O\left(K^{*} \mathrm{~N}^{*} \lg \mathrm{~N}\right)$

another dnc task

Codeforces Round \#406 (Div 1) problem C

Codeforces Round \#406 (Div 1) problem C

Given N people in a line, each having a color. For each $1 \leq k \leq N$, we want to partition the people so that each group is a contiguous interval and has at most k distinct colours. Determine the minimum number of groups

$$
1 \leq N \leq 1 e 5
$$

int naive(int k) // do naively in O(N)
void solve(int l, int r) \{ if (l $+1>=r)$ return;
int mid = l + r >> 1; ans[mid] = ans[l] == ans[r] ? ans[l] : naive(mid);
solve(l, mid); solve(mid, r);
\}
ans[1] = naive(1);
ans[n] = 1;
solve(1, n);

last

dp knuth-yao optimisation

> let's say the common $d p$ $d p[i][j]=\operatorname{cost}(i, j)+\min (i \leq k<j)$ $d p[i][k]+d p[k+1][j]$

let's say the common dp $d p[i][j]=\operatorname{cost}(i, j)+\min (i \leq k<j)$ $d p[i][k]+d p[k+1][j]$

$$
\text { and } \mathrm{OPT}(\mathrm{i}, \mathrm{j}-1) \leq \mathrm{OPT}(\mathrm{i}, \mathrm{j}) \leq \mathrm{OPT}(\mathrm{i}+1, \mathrm{j})
$$

it's obvious that the loop can be optimized
but what's the total running time now?
j

j

sum of at most N opt $(\mathrm{i}, \mathrm{j})=$ $\mathrm{O}(\mathrm{N} \wedge 2)$

basically each $d p(i, j)$ is amortized $O(1)$

$\operatorname{cost}(i, j) \leq \operatorname{cost}(i, j+1)$ and

$\operatorname{cost}(i, i+1)+\operatorname{cost}(i+1, i+2) \leq \operatorname{cost}(i, i+2)+$ $\operatorname{cost}(i+1, i+1)$ implies
$\operatorname{OPT}(i, j-1) \leq \operatorname{OPT}(i, j) \leq \operatorname{OPT}(i+1, j)$

proof is just messy math work

$$
\begin{gathered}
\operatorname{cost}(i, i+1)+\operatorname{cost}(i+1, i+2) \leq \\
\operatorname{cost}(i, i+2)+\operatorname{cost}(i+1, i+1)
\end{gathered}
$$

means broader range have more cost (e.g., quadratic function)

classic usage:

 optimal binary search tree problemgiven N elements. i-th element is going to be queried $\mathrm{E}[\mathrm{i}]$ times. construct the optimal binary search tree to minimize total query time.
ok let's do some tasks

SPOJ ACQUIRE

Given N rectangular plots with width and height. You can buy one land to cover a group for rectangular plots where the cost is maximum width * maximum height

Determine minimum total cost to cover all rectangular plots

$$
1 \leq N \leq 50 k
$$

https://www.hackerrank.com/

 contests/worldcupsemifinals/ challenges/find-number/ problemYou are guessing a number X between 1 to N . Each guess you can give P and $Q(0 \leq P \leq Q \leq N)$. You are told whether $X \leq P, P<X \leq Q$, or $Q<X$ and need to pay $\$ A, \$ B$, or $\$ C$ respectively Find minimum cost to get X

$$
\begin{gathered}
1 \leq N \leq 1 \mathrm{e} 15 \\
1 \leq A, B, C \leq 100
\end{gathered}
$$

example, $N=10, A=1, B=2, C=3$. answer=5

$$
\text { APIO } 2014
$$

Split the Sequence

You have array A of N elements. You want to do this K times:

1. Choose any array that has more than one element 2. Split the array into two
2. Point increased by multiplication of sums of elements of the two splitted arrays

Find maximum total number of points

$$
\begin{gathered}
2 \leq \mathrm{N} \leq 1 \mathrm{e} 5 \\
1 \leq \mathrm{K} \leq \min (\mathrm{N}-1,200)
\end{gathered}
$$

Topcoder SRM 708 PalindromicSubseq

There is a string of N characters.
For each i, calculate the number of palindromic subsequences containing i-th character.
The same character on different indices are considered different.
$1 \leq N \leq 3000$

Q\&A?

